Les  ingénieurs électriciens de l'Université de Duke
 ont développé un   système de télémétrie sans fil, léger mais assez 
puissant pour permettre   aux scientifiques d'étudier l'activité 
neurologique complexe des   libellules lorsqu'elles capturent leurs 
proies.   
Jusqu'à
  présent, les études passées sur le comportement des insectes ont été  
limitées par la difficulté de collecter des données et les méthodes sont
  trop lourdes pour leur permettre d'agir de manière normale,  comme ils
 le font dans la nature. Le nouveau système n'utilise pas de  batteries,
 mais plutôt envoie le courant par rayon à la libellule qui  vole.
 Cordulie bronzée, mâle  en observation
  Cordulia aenea - Cordulidae
 Downy emerald
  En
 essayant de  mieux comprendre le système de commande du vol complexe 
des libellules,  ces ingénieurs collectent leurs informations en 
attachant des électrodes  minuscules aux cellules nerveuses 
individuelles dans le système nerveux  de la libellule et 
enregistrant l'activité électrique des  neurones de la libellule et des 
muscles. Des systèmes existants pour  enregistrer l'activité neurale 
exigent des batteries beaucoup trop lourdes pour être portées par une 
libellule; les  expériences ont donc jusqu'à présent été effectuées avec
 des libellules  immobilisées.
 
 Libellule déprimée, femelle  en ponte 
 Libellula depressa - Libellulidae 
Si
 le nouveau système s'avère fructueux, les  chercheurs s'attendent à ce 
que de nouvelles et passionnantes possibilités dans le  comportement de 
petits animaux s'ouvrent pour la première fois:
Les chercheurs ont développé un  système sans fil qui évite la taille et le poids d'une batterie.
Le
 système fournirait assez de puissance à la puce attachée à une 
libellule volante pour qu'il  puisse transmettre en temps réel les 
signaux électriques d'un grand nombre de ses neurones.
Libellule fauve mâle en observation
Libellula fulva - Libellulidae
Le
 système pourrait envoyer assez d'énergie depuis la puce pour permettre 
de renvoyer des masses  de données à plus de cinq mégabits par seconde, 
ce qui est comparable à  une connexion à Internet privée moyenne. Les  
scientifiques cherchent à synchroniser les données  neuronales et les 
réunir par le biais de la puce à une vidéo haut débit alors que 
l'insecte est en  vol.
La 
puce, avec deux antennes fines comme des cheveux sera fixée sous 
l'insecte pour ne pas gêner le mouvement de ses ailes, la puce  devant 
avoir un contact radio ininterrompu avec l'émetteur.
Orthetrum réticulé femelle en ponte  
Orthetrum cancellatum - Libellulidae 
Black-tailed Skimmer
  
 
 
  
Flight of the dragonfly:
Past  studies of insect behavior 
have been limited by the fact that  today's  remote data collection, or 
telemetry, systems are too heavy to  allow  the insects to act 
naturally, as they would in the wild. The new  system  uses no 
batteries, but rather beams power wirelessly to the  flying  dragonfly.
 
Duke electrical engineer Matt Reynolds, working with  Reid Harrison at  
Intan Technologies, developed the chip for scientists  at the Howard  
Hughes Medical Institute (HHMI), who are trying to better  understand 
the  complex
 flight control system of dragonflies. They gather their information by attaching tiny electrodes to individual nerve cells
   in the dragonfly’s nerve cord and recording the electrical activity 
of   the dragonfly's neurons and muscles. Existing systems for recording
   neural activity require large batteries that are far too heavy to be 
  carried by a dragonfly, so experiments to date have been carried out  
 with immobilized dragonflies.
 
If
 the new system proves  successful, the researchers expect that  broad 
new avenues into studying  behavior of small animals remotely will  
become available for the first  time.
“We
 developed a wireless power system that avoids the need  altogether  for
 the size and weight of a battery,” said Reynolds,  assistant  professor
 of electrical and computer engineering at Duke’s  Pratt School  of 
Engineering. He presented the results of his work today  at the annual  
Biomedical Circuits and Systems Conference, held by the  Institute of  
Electrical and Electronics Engineers (IEEE) in San Diego.
“The
  system provides enough power to the chip attached to a flying   
dragonfly that it can transmit in real time the electrical signals from 
  many dragonfly neurons,” Reynolds said.
The
 chip receives power  wirelessly from a transmitter within the  flight 
arena in which the  experiments are carried out. The system can  send 
enough power to the  chip to enable it to send back reams of data at  
over five megabits per  second, which is comparable to a typical home  
internet connection. This  is important, the scientists said, because  
they plan to sync the  neuronal data gathered from the chip with  
high-speed video taken while  the insect is in flight and preying on  
fruit flies.
“Capturing
  this kind of data in the past has been exceedingly  challenging,” said
  Anthony Leonardo, a neuroscientist who studies the  neural basis of  
insect behavior at HHMI’s Janelia Farm Research Campus  in Virginia. “In
  past studies of insect neurons the animal is alert, but  restrained,  
and observing scenarios on a projection screen. A huge goal  for a lot  
of researchers has been to get data from live animals who are  acting  
naturally.”
The average weight 
of the dragonfly species involved  in these studies  is about 400 
milligrams, and Leonardo estimates that  an individual  dragonfly can 
carry about one-third of its weight without  negatively  impacting its 
ability to fly and hunt. Currently, most  multi-channel  wireless 
telemetry systems weigh between 75 and 150 times  more than a  
dragonfly, not counting the weight of the battery, which  rules them out
  for most insect studies, he said. A battery-powered  version of the  
insect 
telemetry system, previously developed by Harrison and Leonardo, weighs 130 milligrams -- liftable by a foraging dragonfly but with difficulty.
The
  weight of the chip that Reynolds and his team developed is just  38  
milligrams, or less than half of a typical postage stamp. It is also   
one-fifth the weight and has 15 times greater bandwidth of the previous 
  generation system, Reynolds said.
The
 researchers expect to  begin flight experiments with dragonflies  over 
the next few months. The  testing will take place in a specially  
designed flight arena at HHMI's  Janelia Farm complex equipped with  
nature scenes on the walls, a pond  and plenty of fruit flies for the  
dragonflies to eat.
The chip,  
with two hair-thin antennae projecting from the back, will  be attached 
 to the belly of the insect so as not to interfere with the  wings. 
Since  the chip must have uninterrupted radio contact with the  power  
transmitter on the ground, the 
chip is carried much like the backup parachute on the underside of the animal.